Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors.
نویسندگان
چکیده
The E2F group of transcription factors transactivates genes that promote progression through the G1-S transition of the cell cycle. Members of the retinoblastoma (Rb) family of proteins bind to E2Fs and inhibit this function. E2F-4, one example of the E2F group, functions as an oncogene when transfected into nontransformed cells in vitro. On the other hand, mice that are homozygously lacking a normal E2F-1 gene develop cancers, consistent with a tumor-suppressive role for this gene. The exact function of E2Fs has thus been unclear; moreover, direct involvement of this gene in primary human tumorigenesis has not been shown. We, therefore, investigated mutation within the E2F-4 coding region in 16 primary gastric adenocarcinomas, 12 ulcerative colitis-associated neoplasms, 46 sporadic colorectal carcinomas, 9 endometrial cancers, and 3 prostatic carcinomas. We limited our investigation to the serine repeat within E2F-4, reasoning that this tract might be altered in genetically unstable tumors (replication error-positive, or RER+). All tumors were RER+, with the exception of a control group of 15 RER- sporadic colorectal carcinomas. PCR with incorporation of [32P]dCTP was performed using primers flanking the serine trinucleotide (AGC) repeat. Twenty-two of 59 gastrointestinal tumors (37%) contained E2F-4 mutations; these comprised 5 of 16 gastric tumors (31%), 4 of 12 ulcerative colitis-associated neoplasms (33%, including 1 dysplastic lesion), and 13 of 31 sporadic colorectal cancers (42%). No mutation was present in any of the endometrial, prostate, or RER- colorectal tumors. Of note, homozygous mutations occurred in three cases, and two of seven informative patients showed loss of one E2F-4 allele in their tumors. Furthermore, the RER+ sporadic colorectal tumors were evaluated at trinucleotide repeats within the genes for N-cadherin and B-catenin; no tumors demonstrated mutation of these genes. These data suggest that E2F-4 is a target of defective DNA repair in these tumors.
منابع مشابه
غربالگری غیر تهاجمی مارکر تومور S249C ژن FGFR3 به روش TETRA-ARMS-PCR در سلولهای اپیتلیال ادراری در بدخیمی مثانه
Abstract Introduction: Genetic variation of FGFR3 gene is one of the factors affecting the bladder tumor. FGFR3 is a tyrosine kinase receptor, involved in controlling the cellular and angiogenesis cycle. This protein affects a variety of diseases and cancers and cartilage growth abnormalities. Regarding the high activity of fgfr3 mutations in more than 50% of primary tumors of bladder urethral...
متن کاملNeurofibromatosis, its types and treatment prospects
Neurofibromatosis is a genetic disorder that causes tumors in nerve tissue. These tumors can grow in any part of the nervous system, including the brain, spinal cord and nerves. The disease gene can be passed from a parent to a child through marked autosomal dominant inheritance or it can happen due to a spontaneous mutation of a gene. A parent with neurofibromatosis has a 50% chance of passing...
متن کاملC26232T Mutation in Nsun7 Gene and Reduce Sperm Motility in Asthenoteratospermic Men
Reduced sperm quantity and motility are primary causes of infertility in men. Before researchers showed that, Nsun7 gene has roles in sperm motility of mouse, that creation defect in this gene is cause infertility. This gene in human located in chromosome 4, with 12 exons and a hot spot exon (exon7). Our aim is study of the mutations of the exon7 in the normospermic and asthenoteratospermic men...
متن کاملDDK Promotes Tumor Chemoresistance and Survival via Multiple Pathways
DBF4-dependent kinase (DDK) is a two-subunit kinase required for initiating DNA replication at individual origins and is composed of CDC7 kinase and its regulatory subunit DBF4. Both subunits are highly expressed in many diverse tumor cell lines and primary tumors, and this is correlated with poor prognosis. Inhibiting DDK causes apoptosis of tumor cells, but not normal cells, through a largely...
متن کاملExpression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines
Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 57 12 شماره
صفحات -
تاریخ انتشار 1997